
.NET
Interface Guide

Dyalog version 19.0

The tool of thought for software solutions

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2024 by Dyalog Limited
All rights reserved.

.NET Interface Guide

Dyalog version 19.0
Document Revision: 20240223_190

Unless stated otherwise, all examples in this document assume that ⎕IO ⎕ML ← 1

No part of this publication may be reproduced in any form by any means without the
prior written permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Dyalog Limited reserves the right to revise this publication
without notification.

email: support@dyalog.com
https://www.dyalog.com

TRADEMARKS:

Array Editor is copyright of davidliebtag.com
Raspberry Pi is a trademark of the Raspberry Pi Foundation.
Oracle®, JavaScript™ and Java™ are registered trademarks of Oracle and/or its
affiliates.
UNIX® is a registered trademark in the U.S. and other countries, licensed exclusively
through X/Open Company Limited.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Windows® is a registered trademark of Microsoft Corporation in the U.S. and other
countries.
macOS® and OS X® (operating system software) are registered trademarks of Apple
Inc. in the U.S. and other countries.

All other trademarks and copyrights are acknowledged.

Contents

1 About This Document 1
1.1 Audience 1
1.2 Conventions 1

2 Installation 3
2.1 Pre-requisites 3

2.1.1 Installing .NET 3
2.2 Files Installed with Dyalog 4
2.3 Enabling the .NET Interface 5
2.4 Verifying the Installation 5

3 .NET Classes 7
3.1 Locating .NET Classes and Assemblies 7
3.2 Using .NET Classes 9

3.2.1 Constructors and Overloading 10
3.2.2 Resolving References to .NET Objects 11
3.2.3 Displaying a .NET Object 11

3.2.3.1 Value Tips for External Functions 12
3.2.4 Disposing of .NET Objects 13

3.3 Advanced Techniques 14
3.3.1 Shared Members 14
3.3.2 APL Language Extensions for .NET Projects 14
3.3.3 Exceptions 16
3.3.4 Specifying Overloads 16

3.3.4.1 Overloaded Constructors 18
3.4 Example Usage 18

3.4.1 Directory and File Manipulation 18
3.4.2 Sending an Email 19
3.4.3 Web Scraping 20

3.5 Enumerations 21
3.6 Handling Pointers with Dyalog.ByRef 23
3.7 DECF Conversion 25

4 APL Source Files 26
4.1 The Dyalog .NET Compiler 27
4.2 Creating an APL Source File 29
4.3 Copying Code from the Dyalog Session 29
4.4 General Principles of APL Source Files 29
4.5 Creating Programs (.exe) with APL Source Files 30

4.5.1 Defining Namespaces 32
5 Writing .NET Classes 34

5.1 Assemblies, Namespaces, and Classes 34

.NET Interface Guide

revision 20240223_190 i

5.1.1 The Bind Method 35
5.2 Tutorial 36

5.2.1 Example 1 37
5.2.1.1 aplclasses1 38

5.2.2 Example 2 39
5.2.2.1 aplclasses2 40

5.2.3 Example 3 41
5.2.3.1 aplclasses3 42

5.2.4 Example 4 43
5.2.4.1 aplclasses4 44

5.2.5 Example 5 45
5.2.5.1 aplclasses5 47

5.3 Interfaces 48
5.4 Creating .NET Classes with APL Source Files 49

5.4.1 Example: Creating A .NET Class Using an APL Source File 50
5.4.2 Defining Properties 51
5.4.3 Indexers 54

Index 55

.NET Interface Guide

revision 20240223_190 ii

1 About This Document

This document describes the Dyalog interface to .NET, the cross-platform (Microsoft
Windows, Linux and macOS) successor to Microsoft's .NET Framework. It describes
how Dyalog communicates with .NET, but does not attempt to explain the features of
.NET; for information concerning .NET, see Microsoft's documentation, articles and
helpfiles (available from https://docs.microsoft.com/en-us/dotnet/).

.NET is not available for IBM AIX.

1.1 Audience
It is assumed that the reader has a working knowledge of Dyalog and a basic
understanding of OO methodologies, and is familiar with .NET and/or .NET
Framework.

For information on the resources available to help develop your Dyalog knowledge,
see https://www.dyalog.com/introduction.htm.

1.2 Conventions
Unless explicitly stated otherwise, all examples in Dyalog documentation assume that
⎕IO and ⎕ML are both 1.

Various icons are used in this document to emphasise specific material.

General note icons, and the type of material that they are used to emphasise, include:

Hints, tips, best practice and recommendations from Dyalog Ltd.

Material of particular significance or relevance.

revision 20240223_190 1

.NET Interface Guide

https://docs.microsoft.com/en-us/dotnet/
https://www.dyalog.com/introduction.htm

Legacy information pertaining to behaviour in earlier releases of Dyalog or to
functionality that still exists but has been superseded and is no longer
recommended.

Warnings about actions that can impact the behaviour of Dyalog or have
unforeseen consequences.

A full list of the platforms on which Dyalog version 19.0 is supported is available at
https://www.dyalog.com/dyalog/current-platforms.htm. Although the Dyalog
programming language is identical on all platforms, differences do exist in the way
some functionality is implemented and in the tools and interfaces that are available.
Differences in behaviour between operating systems are identified with the following
icons (representing macOS, Linux, Microsoft Windows and UNIX respectively):

revision 20240223_190 2

.NET Interface Guide

https://www.dyalog.com/dyalog/current-platforms.htm

2 Installation

2.1 Pre-requisites
See Microsoft's .NET webpages (https://dotnet.microsoft.com/) for information on
whether the version of macOS/Linux/Microsoft Windows that you are running
supports .NET.

.NET is not available for IBM AIX and is not supported on the Raspberry Pi
models Zero, 1 or 2.

The Dyalog version 19.0 .NET interface requires .NET version 8.0 or later – it does not
work with earlier versions of .NET.

The .NET interface only works with the Unicode edition of Dyalog; the Classic edition
is not supported.

Once .NET has been successfully installed (see Section 2.1.1) no further installation is
required to use the Dyalog .NET interface.

Exporting APL code to .NET assemblies is only supported on 64-bit versions of
Dyalog.

2.1.1 Installing .NET

.NET can be downloaded from https://dotnet.microsoft.com/download – download
the appropriate .NET SDK and install it according to Microsoft's instructions.

The default installation directory depends on the platform and installation method.
Dyalog Ltd recommends that .NET is installed in the following platform-dependent
directories:

l /usr/local/share/dotnet on macOS
l /usr/share/dotnet on Linux and Raspberry Pi

revision 20240223_190 3

.NET Interface Guide

https://dotnet.microsoft.com/
https://dotnet.microsoft.com/download

l C:\Program Files\dotnet on 64-bit Microsoft Windows
l C:\Program Files (x86)\dotnet on 32-bit Microsoft Windows

If you decide not to install .NET in the default directory, then you need to set the
DOTNET_ROOT environment variable to point to your installation location before you
start Dyalog. This is a Microsoft variable, not a Dyalog-specific one, so cannot be set in
Dyalog's configuration files. See Microsoft's documentation for instructions on how to
do this (https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-environment-
variables).

On Raspberry Pi Bookworm, do not use the Microsoft-supplied dotnet-install.sh
script as the resulting .NET installation cannot be used.

EXAMPLE

This example shows the steps taken on Linux to download the runtime to
/tmp/dotnet-runtime-8.0.0-linux-x64.tar.gz – following these instructions it should
not be necessary to define DOTNET_ROOT.
sudo mkdir -p /usr/share/dotnet
cd /usr/share/dotnet
sudo tar -zxvf /tmp/dotnet-runtime-8.0.0-linux-x64.tar.gz
sudo /usr/share/dotnet/dotnet /usr/bin/dotnet

This is only an example of code that worked on a specific configuration in our
tests; the latest instructions in Microsoft's .NET documentation should always
be followed.

2.2 Files Installed with Dyalog
The components used to support the .NET interface are summarised below. Different
versions of each component are supplied according to the target platform.

l Dyalog.Net.Bridge.dll – the interface library through which all calls between
Dyalog and .NET are processed.

l Dyalog.Net.Bridge.Host.<operating system>.dll – auxiliary file
l nethost.dll – auxiliary file
l Dyalog.Net.Bridge.deps.json – auxiliary file
l Dyalog.Net.Bridge.runtimeconfig.json – auxiliary file

revision 20240223_190 4

.NET Interface Guide

https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-environment-variables
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-environment-variables

2.3 Enabling the .NET Interface
The .NET interface is enabled when the DYALOG_NETCORE configuration parameter is
set to 1; this is the default setting on Linux (including the Raspberry Pi) and macOS.
On Microsoft Windows the default setting is 0 for backwards compatibility (a setting
of 0 enables the .NET Framework interface).

The .NET interface and .NET Framework interface cannot be enabled
simultaneously.

For information on how to set configuration parameters, see the appropriate Dyalog
for <operating system> Installation and Configuration Guide. To check the value of
DYALOG_NETCORE, enter the following when in a Session:

+2 ⎕NQ'.' 'GetEnvironment' 'DYALOG_NETCORE'

If the result is 1 (or empty on Linux/macOS), then the .NET interface is enabled.

2.4 Verifying the Installation
Dyalog Ltd recommends that the following command is run at the start of any
application that will use .NET:

r←2250⌶⍬

This command identifies the state of the .NET interface while attempting to suppress
all associated error messages (for more information on 2250⌶, see the Dyalog APL
Language Reference Guide):

l If r≡1 1 '' then the .NET interface should work
l If r≡2 1 '' then the .NET Framework interface should work (for more

information see the Dyalog for Microsoft Windows .NET Framework
Interface Guide)

For any other value of r, the interface will not work. An indication of why the
interface is not working might be given in error messages in the status/Session
window or r[3].

If the interface is not working correctly, then:
l ensure that .NET has been installed according to Microsoft's .NET

documentation (https://docs.microsoft.com/en-gb/dotnet/).
l check that DOTNET_ROOT is correctly set
l check that DYALOG_NETCORE is correctly set (that is, not set to 0)

revision 20240223_190 5

.NET Interface Guide

https://docs.microsoft.com/en-gb/dotnet/

If everything has been installed and enabled correctly, then the version of .NET in use
will be returned by the following statement:

⎕USING←'System' ⋄ Environment.Version

revision 20240223_190 6

.NET Interface Guide

3 .NET Classes

.NET conforms to Microsoft's Common Type System. This comprises a set of data
types, permitted values and permitted operations that define the rules by which
different languages can interact with one another – all co-operating languages that
use these types can have their operations and values checked (by the Common
Language Runtime) at runtime. .NET also provides its own built-in class library that
provides all the primitive data types, together with higher-level classes that perform
useful operations.

.NET classes are implemented as part of the Common Type System. Types include
interfaces, value types and classes. .NET provides built-in primitive types as well as
higher-level types that are useful in building applications. A class is a subset of Type
(distinct from interfaces and value types) that encapsulates a particular set of
methods, events and properties. The word object is usually used to refer to an
instance of a class. An object is typically created by calling the system function ⎕NEW
with the class as the first element of the argument. An assembly is a file that contains
all of the code and metadata for one or more classes. Assemblies can be dynamic
(created in memory as needed) or static (files on disk). In this document, "assembly"
refers to a file (usually with a .dll extension) on disk. Classes support inheritance, in
that every class (but one) is based on a base class.

Through the use of instances of .NET classes, Dyalog gains access to a huge amount of
component technology that is provided by .NET; the benefits of this approach include
enhanced reliability, software management, code reusage and reduced maintenance.

3.1 Locating .NET Classes and Assemblies
.NET assemblies and the classes they contain are generally self-contained
independent entities (although they can be based upon classes in other assemblies).
This means that a class can be installed by copying the assembly file onto hard disk
and uninstalled by erasing the file.

revision 20240223_190 7

.NET Interface Guide

Microsoft supplies a tool for browsing .NET class libraries called ildasm.exe
(Intermediate Language Disassembler). On Microsoft Windows, ILDASM has a
GUI front end; it can be found in the .NET SDK and is distributed with Visual
Studio. For other platforms, ILDASM is available as a command line tool that
can be downloaded from https://www.nuget.org/packages/runtime.linux-
x64.Microsoft.NETCore.ILDAsm/.

Although classes are arranged physically into assemblies, they are also arranged
logically into namespaces. These are not related to Dyalog's namespaces and, to avoid
confusion, are referred to in this document as .NET namespaces.

A single .NET namespace can map onto a single assembly. For example, the .NET
namespace System.IO is contained in an assembly named System.IO.FileSystem.dll.
However, a .NET namespace can be implemented by more than one assembly,
removing the one-to-one-mapping between .NET namespaces and assemblies. For
example, the main top-level .NET namespace, System, spans a number of different
assembly files.

Within a single .NET namespace there can be numerous classes, each with its own
unique name. The full name of a class is the name of the class prefixed by the name of
the .NET namespace and a dot (the namespace name can also be delimited by dots).
For example, the full name of the DateTime class in the .NET namespace System is
System.DateTime. Any number of different versions of an assembly can be installed
on a single computer, and there can be multiple .NET namespaces with the same
name, implemented in different sets of assembly files.

To use a .NET class, it is necessary to tell the system to load the assembly in which it is
defined. In many languages (including C#) this is done by supplying the names of the
assemblies. To avoid having to refer to full class names, C# allows the .NET
namespace prefix to be elided. In this case, the programmer must declare a list of
.NET namespaces with using declaration statements. This list is then used to resolve
unqualified class names referred to in the code. In either language, when the
compiler encounters the unqualified name of a class, it searches the specified .NET
namespaces for that class. In Dyalog, this mechanism is implemented by the ⎕USING
system variable. ⎕USING performs the same two tasks that using/imports
declarations provide in C#; that is, to give a list of .NET namespaces to be searched for
unqualified class names and to specify the assemblies that are to be loaded.

revision 20240223_190 8

.NET Interface Guide

https://www.nuget.org/packages/runtime.linux-x64.Microsoft.NETCore.ILDAsm/
https://www.nuget.org/packages/runtime.linux-x64.Microsoft.NETCore.ILDAsm/

⎕USING is a vector of character vectors, each element of which contains 1 or 2
comma-delimited strings. The first string specifies the name of a .NET namespace; the
second specifies the assembly either with a file name (the string ends with the
extension .dll) or with an assembly name. If an assembly name is given, standard .NET
rules are used to locate the assembly.

It is convenient to treat .NET namespaces and assemblies in pairs. For example, the
System.IO namespace is located within the System.IO.FileSystem
assembly.

⎕USING has namespace scope, that is, each Dyalog namespace, class or instance has
its own value of ⎕USING that is initially inherited from its parent space but can be
separately modified. ⎕USING can also be localised in a function header so that
different functions can declare different search paths for .NET
namespaces/assemblies.

If ⎕USING is empty (⎕USING←0⍴⊂''), then Dyalog does not search for .NET classes to
resolve names that would otherwise give a VALUE ERROR.

Assigning a simple character vector to ⎕USING is equivalent to setting it to the
enclose of that vector. The statement (⎕USING←'') does not empty ⎕USING, but
rather sets it to a single empty element, which gives access to the System.Runtime
and System.Private.CoreLib assembly files without a namespace prefix.

3.2 Using .NET Classes
To create a Dyalog object as an instance of a .NET class, the ⎕NEW system function is
used. The ⎕NEW system function is monadic. It takes a 1 or 2-element argument, the
first element of which is a class.

If the argument is a scalar or a 1-element vector, an instance of the class is created
using the constructor overload that takes no argument.

If the argument is a 2-element vector, an instance of the class is created using the
constructor overload (see Section 3.2.1) whose argument matches the disclosed
second element.

EXAMPLE

Creating an instance of the DateTime class requires an argument with two
elements: (the class and the constructor argument; in this example the constructor

revision 20240223_190 9

.NET Interface Guide

argument is a 3-element vector representing the date). Many classes provide a
default constructor that takes no arguments. From Dyalog , the default constructor is
called by calling ⎕NEW with only a reference to the class in the argument.

To create a DateTime object whose value is 30 April 2008:

 ⎕USING←'System'
 mydt←⎕NEW DateTime (2008 4 30)

Alternatively, to use fully-qualified class names, one of the elements of ⎕USINGmust
be an empty vector:

 ⎕USING←,⊂''
mydt←⎕NEW System.DateTime (2008 4 30)

In both cases, the result of ⎕NEW is a reference to the newly created instance:

 ⎕NC ⊂'mydt'
9.2

When a reference to a .NET object is formatted, APL calls its ToStringmethod to
obtain a useful description or identification of the object (this topic is discussed in
more detail in Section 3.2.3):
 mydt
30/04/2008 00:00:00

3.2.1 Constructors and Overloading

Each .NET class has one or more constructormethods. These are called to initialise an
instance of the class. Typically, a class will support several constructor methods, each
with a different set of parameters. For example, System.DateTime supports a
constructor that takes three Int32 parameters (year, month, day), another that
takes six Int32 parameters (year, month, day, hour, minute, second), and various
other constructors. These different constructor methods are not distinguished by
having different names but by the different sets of parameters that they accept.

This concept, which is known as overloading, may seem somewhat alien to the APL
programmer, who will be accustomed to defining functions that accept an arbitrary
array. However, type checking, which is fundamental to .NET, requires that a method
is called with the correct number of parameters, and that each parameter is of a
predefined type. Overloading solves this issue.

revision 20240223_190 10

.NET Interface Guide

When creating an instance of a class in C#, the new operator is used. At compile time,
this is mapped to the appropriate constructor overload by matching the user-supplied
parameters to the various forms of the constructor. A similar mechanism is
implemented in Dyalog by the ⎕NEW system function.

3.2.2 Resolving References to .NET Objects

When Dyalog executes an expression such as

mydt←⎕NEW DateTime (2008 4 30)

the following logic is used to resolve the reference to DateTime correctly.

The first time that Dyalog encounters a reference to a non-existent name (that is, a
name that would otherwise generate a VALUE ERROR), it searches the .NET
namespaces/assemblies specified by ⎕USING for a .NET class of that name. If found,
the name (in this case, System.DateTime) is recorded in the APL symbol table
with a name class of 9.6 and is associated with the corresponding .NET Type. If not
found, then VALUE ERROR is reported as usual. This search ONLY takes place if
⎕USING has been assigned a non-empty value.

Subsequent references to that symbol (in this case DateTime) are resolved directly
and do not involve any assembly searching.

If ⎕NEW is called with only a class as argument, then Dyalog attempts to call the
overload of its constructor that is defined to take no arguments. If no such overload
exists, then the call fails with a LENGTH ERROR.

If ⎕NEW is called with a class as argument and a second element, then Dyalog calls the
version of the constructor whose parameters match the second element supplied to
⎕NEW. If no such overload exists, then the call will fail with either a LENGTH ERROR or
a DOMAIN ERROR.

3.2.3 Displaying a .NET Object

When you display a reference to a .NET object, APL calls the object's ToString
method and displays the result. All objects provide a ToStringmethod because all
objects ultimately inherit from the .NET class System.Object, which provides a
default implementation. Many .NET classes provide their own ToString that
overrides the one inherited from System.Object and returns a useful
representation of the object in question. ToString usually supports a range of
calling parameters, but APL always calls the version of ToString that is defined to
take no calling parameters. The monadic format function (⍕) and monadic ⎕FMT have

revision 20240223_190 11

.NET Interface Guide

been extended to provide the same result and provide a shorthand method to call
ToString. The default ToString supplied by System.Object returns the
name of the object's Type. For a particular object in the namespace, this can be
changed using the system function ⎕DF.

EXAMPLE

⎕USING←'System'
z←⎕NEW DateTime ⎕TS
z.(⎕DF(⍕DayOfWeek),,'G< 99:99>'⎕FMT 100⊥Hour Minute)
z

Saturday 09:17

The type of an object can be obtained using the GetTypemethod, which is
supported by all .NET objects:

z.GetType
System.DateTime

3.2.3.1 Value Tips for External Functions

Value Tips can be used to view the syntax of external functions. If you hover over the
name of an external function, the Value Tip displays its Function Signature.

For example, Figure 3-1 shows the mouse hovered over the external function
dt.AddMonths, which reveals that it requires a single integer as its argument.

Figure 3-1: Function signature – single integer argument

revision 20240223_190 12

.NET Interface Guide

If an external function provides more than one signature, then they are all shown in
the Value Tip (see Figure 3-2; the function ToString has four different overloads.

Figure 3-2: Function signature – multiple arguments

3.2.4 Disposing of .NET Objects

.NET objects are managed by the .NET Common Language Runtime (CLR). The
CLR allocates memory for an object when it is created, and deallocates this memory
when it is no longer required.

When the (last) reference from Dyalog to a .NET object is expunged by ⎕EX or by
localisation, the system marks the object as unused, leaving it to the CLR to deallocate
the memory that it had previously allocated to it (when appropriate – even though
Dyalog has dereferenced the APL name, the object could potentially still be
referenced by another .NET class).

Deallocated memory might not be reused immediately and might never be reused,
depending on the algorithms used by the CLR garbage disposal.

Furthermore, a .NET object can allocate unmanaged resources (such as window
handles) which are not automatically released by the CLR.

To allow the programmer to control the freeing of resources associated with .NET
objects in a standard way, many objects implement the IDisposable interface
which provides a Dispose()method. The C# language provides a using control
structure that automates the freeing of resources. Crucially, it does so irrespective of

revision 20240223_190 13

.NET Interface Guide

how the flow of execution exits the control structure, even as a result of error
handling. This obviates the need for the programmer to call Dispose() explicitly
wherever it may be required.

This programming convenience is provide in Dyalog by the
:Disposable ... :EndDisposable control structure. For more information on
this control structure, see the Dyalog Programming Reference Guide.

3.3 Advanced Techniques

3.3.1 Shared Members

Certain .NET classes provide methods, fields and properties that can be called directly
without the need to create an instance of the class first. Thesemembers are known as
shared, because they have the same definition for the class and for any instance of
the class.

The methods Now and IsLeapYear exported by System.DateTime fall into this
category.

EXAMPLE

⎕USING←,⊂'System'

DateTime.Now
18/03/2020 11:14:05

DateTime.IsLeapYear 2000
1

3.3.2 APL Language Extensions for .NET Projects

.NET provides a set of standard operators (methods) that are supported by certain
classes, for example, methods to add and subtract .NET objects and methods to
compare two .NET objects.

EXAMPLE 1: DATETIME – ADDING AND SUBTRACTING

The op_Addition and op_Subtraction operators add and subtract TimeSpan
objects to DateTime objects:

DT3←System.DateTime.Now
DT3

15/02/2024 10:35:35

revision 20240223_190 14

.NET Interface Guide

TS←⎕NEW TimeSpan (1 1 1)
TS

01:01:01

DateTime.op_Addition DT3 TS
15/02/2024 11:36:36

DateTime.op_Subtraction DT3 TS
15/02/2024 09:34:34

EXAMPLE 2: DATETIME – COMPARING

The op_Equality and op_Inequality operators compare two DateTime
objects:

DT1←⎕NEW DateTime (2024 4 30)
DT2←⎕NEW DateTime (2024 1 1)

⍝ Is DT1 equal to DT2?
DateTime.op_Equality DT1 DT2

0

Some corresponding APL primitive functions have been extended to accept .NET
objects as arguments and call these standard .NET methods internally. The methods
and the corresponding APL primitives that are currently available are shown in Table 3-
1.

.NET Method APL Primitive Function
op_Equality = and ≡

op_Inequality ≠ and ≢

Table 3-1: .NET methods and their APL primitive function equivalents

This means that Example 2 becomes:

DT1←⎕NEW DateTime (2024 4 30)
DT2←⎕NEW DateTime (2024 1 1)

⍝ Is DT1 equal to DT2?
DT1 = DT2

0

Calculations and comparisons performed by .NET methods are performed
independently from the values of APL system variables (such as ⎕FR and ⎕CT).

revision 20240223_190 15

.NET Interface Guide

3.3.3 Exceptions

When a .NET object generates an error, it does so by throwing an exception. An
exception is a .NET class whose ultimate base class is System.Exception.

The system constant ⎕EXCEPTION returns a reference to the most recently generated
exception object.

For example, if you attempt to create an instance of a DateTime object with a year
that is outside its range, the constructor throws an exception. This causes APL to
report a (trappable) EXCEPTION error (error number 90) and access to the exception
object is provided by ⎕EXCEPTION.

⎕USING←'System'
DT←⎕NEW DateTime (100000 0 0)

EXCEPTION: Year, Month, and Day parameters describe an un-
representable DateTime.

DT←⎕NEW DateTime (100000 0 0)
^

⎕EN
90

⎕EXCEPTION.Message
Year, Month, and Day parameters describe an un-representable
DateTime.

⎕EXCEPTION.Source
System.Private.CoreLib

⎕EXCEPTION.StackTrace
at System.DateTime.DateToTicks(Int32 year, Int32 month, Int32
day)
at System.DateTime..ctor(Int32 year, Int32 month, Int32 day)

The result of ⎕EXCEPTION.StackTrace can depend on the exact version of
.NET – your result might look different, but if it includes
System.DateTime..ctor(Int32 year, Int32 month, Int32 day)
then it is showing the correct exception for this example.

3.3.4 Specifying Overloads

If a .NET function is overloaded in terms of the types of arguments that it accepts,
then Dyalog chooses which overload to call depending on the data types of the
arguments passed to it. For example, if a .NET function foo() is declared to take a

revision 20240223_190 16

.NET Interface Guide

single argument either of type int or of type double, Dyalog would call the first
version if you called it with an integer value and the second version if you called it
with a floating-point value.

Occasionally it might be desirable to override this mechanism and explicitly specify
which overload to use. This can be done by calling the function and specifying the
Variant operator ⍠ with the OverloadTypes option. This takes an array of
references to .NET types, of the same length as the number of parameters to the
function.

EXAMPLE

To force APL to call the double version of function foo() irrespective of the type of
the argument val, enter:

(foo ⍠('OverloadTypes'Double))val

or (more simply):

(foo ⍠Double)val

where Double is a reference to the .NET type System.Double.

⎕USING←'System'
Double

(System.Double)

Taking this a stage further, suppose that foo() is defined with 5 overloads as follows:
foo()
foo(int i)
foo(double d)
foo(double d, int i)
foo(double[] d)

The following statements will call the niladic, double, (double, int) and double[]
overloads respectively:

(foo ⍠ (⊂⍬)) ⍬ ⍝ niladic
(foo ⍠ Double) 1 ⍝ double
(foo ⍠(⊂Double Int32))1 1 ⍝ double,int
(foo ⍠(Type.GetType ⊂'System.Double[]'))⊂1 1 ⍝ double[]

revision 20240223_190 17

.NET Interface Guide

3.3.4.1 Overloaded Constructors

If a class provides constructor overloads, then a similar mechanism is used to specify
which of the constructors is to be used when an instance of the class is created using
⎕NEW.

For example, if MyClass is a .NET class with an overloaded constructor, and one of
its constructors is defined to take two parameters; a double and an int, then the
following statement would create an instance of the class by calling that specific
constructor overload:

(⎕NEW ⍠ (⊂Double Int32)) MyClass (1 1)

3.4 Example Usage

3.4.1 Directory and File Manipulation

The .NET namespace System.IO (in the System.IO.FileSystem assembly)
provides some useful facilities for manipulating files. For example, you can create a
DirectoryInfo object associated with a particular directory on your computer,
call its GetFilesmethod to obtain a list of files, and then get their Name and
CreationTime properties:

⎕USING←,⊂'System.IO, System.IO.FileSystem'
dir←'C:\Program Files\Dyalog\Dyalog APL-64 19.0 Unicode'
d←⎕NEW DirectoryInfo (⊂dir)

where d is an instance of the Directory class, corresponding to the directory
[DYALOG].

[DYALOG] refers to the directory in which Dyalog is installed; this example
assumes [DYALOG] to be C:/Program Files/Dyalog/Dyalog APL-64 19.0
Unicode.

The GetFilesmethod returns a list of files (more precisely, FileInfo objects)
that represent each of the files in the directory. Its optional argument specifies a
filter. For example:

d.GetFiles ⊂'*.exe'
C:\Program Files\Dyalog\Dyalog APL-64 19.0 Unicode\dyaedit.exe
C:\Program Files\Dyalog\Dyalog APL-64 19.0 Unicode\dyalog.exe
C:\Program Files\Dyalog\Dyalog APL-64 19.0 Unicode\dyalogc.exe
C:\Program Files\Dyalog\Dyalog APL-64 19.0 Unicode\

revision 20240223_190 18

.NET Interface Guide

dyalogc64_unicode.exe C:\Program Files\Dyalog\Dyalog APL-64
19.0 Unicode\dyalogrt.exe C:\Program Files\Dyalog\Dyalog APL-64
19.0 Unicode\dyascript.exe

The Name property returns the name of the file associated with the File object:

(d.GetFiles ⊂'*.exe').Name
dyaedit.exe dyalog.exe dyalogc.exe dyalogc64_unicode.exe
dyalogrt.exe dyascript.exe

and the CreationTime property returns its creation time, which is a DateTime
object:

(d.GetFiles ⊂'*.exe').CreationTime
08/02/2024 20:51:24 08/02/2024 20:50:06 08/02/2024 ...

Calling the GetFiles overload that does not take any arguments (from Dyalog by
supplying an argument of ⍬) returns a complete list of files:

files←d.GetFiles ⍬
files

C:\Program Files\Dyalog\Dyalog APL-64 19.0
Unicode\aplunicd.ini...

Taking advantage of namespace reference array expansion, an expression to display
file names and their creation times is:

files,[1.5]files.CreationTime
C:\...\...Unicode\aplunicd.ini 08/02/2024 20:12:02
C:\...\...Unicode\bridge190-64_unicode.dll 08/02/2024 20:47:36
...

3.4.2 Sending an Email

The .NET namespace System.Net.Mail provides objects for handing email. You
can create a new email message as an instance of the MailMessage class, set its
various properties and then send it using the SmtpClient class.

EXAMPLE

This example will only work if your computer is configured to allow you to send email.

∇ recip Send(subject msg);⎕USING;from;mail;to;builder;client;
FROM_ADDRESS; EMAIL_SERVER

⎕USING←'System.Net.Mail,System.Net.Mail'

FROM_ADDRESS←'someone@somewhere.com'
EMAIL_SERVER←'mail.somwhere.com'

revision 20240223_190 19

.NET Interface Guide

from←⎕NEW MailAddress(⊂FROM_ADDRESS)
to←⎕NEW MailAddress(recip '')
mail←⎕NEW MailMessage (from to)
mail.Body←msg
mail.Subject←subject
client←⎕NEW SmtpClient (⊂EMAIL_SERVER)
client.Send mail

∇

This could then be called as follows:

'prime.minister@gov.uk' Send ('subject' ('line1' 'line2'))

3.4.3 Web Scraping

.NET provides a range of classes for accessing the internet from a program. This
section works through an example that shows how to read the contents of a web
page. It is complicated, but realistic (for example, it includes code to cater for a
firewall/proxy connection to the internet). It is only 9 lines of APL code, but each line
requires careful explanation.

Start by defining ⎕USING so that it specifies all of the necessary .NET namespaces and
assemblies:

⎕USING←,⊂'System,System.dll'
⎕USING,←⊂'System.Net, System.Net.Requests'
⎕USING,←⊂'System.IO'

The WebRequest class in the System.Net .NET namespace implements .NET's
request/response model for accessing data from the internet. For this example, a
WebRequest object needs to be associated with the URI http://www.dyalog.com
(WebRequest is an example of a static class – its methods can be used without
creating instances of it):

wrq←WebRequest.Create ⊂'http://www.dyalog.com'

Potentially confusingly, if the URI specifies a protocol of "http://" or "https://", an
object of type HttpWebRequest is returned rather than a simple WebRequest.
The effect of this is that, at this stage, wrq is an HttpWebRequest object.

wrq
System.Net.HttpWebRequest

revision 20240223_190 20

.NET Interface Guide

The HttpRequest class has a GetResponsemethod that returns a response from
an internet resource. Although it is not yet HTML, the result is an object of type
System.Net.HttpWebResponse:

wr←wrq.GetResponse
wr

System.Net.HttpWebResponse

The HttpWebResponse class has a GetResponseStreammethod whose result
is of type System.Net.ConnectStream. This object, whose base class is
System.IO.Stream, provides methods to read and write data both synchronously
and asynchronously from a data source, which in this case is physically connected to a
TCP/IP socket:

str←wr.GetResponseStream
str

System.Net.Http.HttpConnection+ChunkedEncodingReadStream

However, the Stream class is designed for byte input and output; what is needed in
this example is a class that reads characters in a byte stream using a particular
encoding. This is a job for the System.IO.StreamReader class. Given a Stream
object, create a new instance of a StreamReader by passing it the Stream as a
parameter:

rdr←⎕NEW StreamReader str
rdr

System.IO.StreamReader

Finally, use the ReadToEndmethod of the StreamReader to get the contents of
the page:

s←rdr.ReadToEnd
⍴s

20295

To avoid running out of connections, it is necessary to close the stream:

str.Close

3.5 Enumerations
An enumeration is a set of named constants that can apply to a particular operation.
For example, when opening a file you typically want to specify whether the file is to
be opened for reading, for writing or for both. A method that opens a file will take a

revision 20240223_190 21

.NET Interface Guide

parameter that specifies this. If this is implemented using an enumerated constant,
then the parameter can be one of a specific set of (typically) integer values, for
example, 1 = read, 2 = write, 3 = read and write. However, to avoid using ambiguous
numbers in code, it is conventional to use names to represent particular values. These
are known as enumerated constants or, more simply, as enums.

In .NET, enums are implemented as classes that inherit from the System.Enum base
class. The class as a whole represents a set of enumerated constants; each of the
constants is represented by a static field within the class.

Typically, an enumerated constant would be used as a parameter to a method or to
specify the value of a property. For example, the DayOfWeek property of the
DateTime object returns a value of Type System.DayOfWeek (it is incidental that
both the Type and property are called DayOfWeek):

⎕USING←'' 'System'
cal←⎕NEW DateTime(1981 09 23)
cal.DayOfWeek

Wednesday
cal.DayOfWeek.GetType

System.DayOfWeek
System.DayOfWeek.⎕NL ¯2

Friday Monday Saturday Sunday Thursday Tuesday Wednesday

The function System.Convert.ToBase64String has some constructor
overloads that take an argument of Type System.Base64FormattingOptions,
which is an enum:

System.Convert.ToBase64String
System.String ToBase64String(Byte[])
...

System.Base64FormattingOptions.⎕NL ¯2
InsertLineBreaks None

Hence:

(⎕UCS 13)∊ System.Convert.ToBase64String(⊂⍳100) System.
Base64FormattingOptions.InsertLineBreaks

1
(⎕UCS 13)∊ System.Convert.ToBase64String(⊂⍳100) System.

Base64FormattingOptions.None
0

revision 20240223_190 22

.NET Interface Guide

An enum has a value that can be used in place of the enum itself when such usage is
unambiguous. For example, the
System.Base64FormattingOptions.InsertLineBreaks enum has an
underlying value of 1:

Convert.ToInt32 Base64FormattingOptions.InsertLineBreaks
1

This means that the scalar value 1 can be used as the second parameter to
ToBase64String:

(⎕UCS 13)∊ System.Convert.ToBase64String(⍳100) 1
1

However, this practice is not recommended. Not only does it make the code less
clear, but also if a value for a property or a parameter to a method can be one of
several different enum types, APL cannot tell which is expected and the call will fail.

3.6 Handling Pointers with Dyalog.ByRef
Certain .NET methods take parameters that are pointers, for example, the DivRem
method that is provided by the System.Math class. This method performs an
integer division, returning the quotient as its result, and the remainder in an address
specified as a pointer by the calling program.

APL does not have a mechanism for dealing with pointers, so Dyalog provides a .NET
class for this purpose. This is the Dyalog.ByRef class, which is provided in
Dyalog.Net.Core.Bridge.dll (which is automatically loaded by Dyalog).

To gain access to the Dyalog .NET namespace, it must be specified by ⎕USING. The
assembly (DLL) from which it is obtained (the Dyalog.Net.Bridge.dll file) does not
need to be specified as it is automatically loaded when Dyalog starts:

⎕USING←'System.IO,System.IO.FileSystem' 'Dyalog'

The Dyalog.ByRef class represents a pointer to an object of type
System.Object. It has a number of constructors, some of which are used
internally by Dyalog. Only two of these are of particular interest – the one that takes
no parameters, and the one that takes a single parameter of type System.Object.
The former is used to create an empty pointer; the latter to create a pointer to an
object or some data.

For example, to create an empty pointer:

ptr1←⎕NEW ByRef

revision 20240223_190 23

.NET Interface Guide

or, to create pointers to specific values:

ptr2←⎕NEW ByRef 0
ptr3←⎕NEW ByRef (⊂⍳10)
ptr4←⎕NEW ByRef (⎕NEW DateTime (2000 4 30))

As a single parameter is required, it must be enclosed if it is an array with several
elements. Alternatively, the parameter can be a .NET object.

The ByRef class has a single property called Value:

ptr2.Value
0

ptr3.Value
1 2 3 4 5 6 7 8 9 10

ptr4.Value
30/04/2000 00:00:00

If the Value property is referenced without first setting it, a VALUE ERROR is
returned:

ptr1.Value
VALUE ERROR

ptr1.Value
^

Returning to the example, the DivRemmethod takes 3 parameters:

1. the numerator
2. the denominator
3. a pointer to an address into which the method will write the remainder after

performing the division

remptr←⎕NEW ByRef
remptr.Value

VALUE ERROR
remptr.Value

^

Math.DivRem 311 99 remptr
3

remptr.Value
14

revision 20240223_190 24

.NET Interface Guide

Sometimes a .NET method can take a parameter that is an array and the method
expects to fill in the array with appropriate values. In APL there is no syntax to allow a
parameter to a function to be modified in this way. However, the Dyalog.ByRef
class can be used to call this method. For example, the System.IO.FileStream
class contains a Readmethod that populates its first argument with the bytes in the
file:

⎕USING←'System.IO' 'Dyalog' 'System'
fs←⎕NEW FileStream ('c:\tmp\jd.txt' FileMode.Open)
fs.Length

25

fs.Read(arg←⎕NEW ByRef,(⊂25⍴0))0 25
25

arg.Value
104 101 108 108 111 32 102 114 111 109 32 106 111 104 110 32 100
97 105 110 116 114 101 101 10

3.7 DECF Conversion
Incoming .NET data types System.Decimal and System.Int64 are converted
to 126-bit decimal numbers (DECFs). This conversion is performed independently of
the value of ⎕FR.

To perform arithmetic on values imported in this way, set ⎕FR to 1287, at least for the
duration of the calculations.

revision 20240223_190 25

.NET Interface Guide

4 APL Source Files

APL Source files contain definitions (the “source”) of one or more named APL objects,
that is, functions, operators, namespaces, classes, interfaces and arrays. They cannot
contain anything else. They are not workspace-oriented (although you can call
workspaces from them) but are simply character files containing function bodies and
expressions. This means that they would be valid right arguments to 2 ⎕FIX.

APL Source files employ Unicode encoding, so you need a Unicode font with APL
symbols, such as APL385 Unicode, to create or view them. They can be viewed and
edited using any character-based editor that supports Unicode text files.

To enter Dyalog APL symbols into an APL Source file, you need the Dyalog Input
Method Editor (IME) or other APL compatible keyboard. The Dyalog IME can be
configured from the Dyalog Configuration dialog box. You can change the
associated .DIN file or there are various other options. APL Source files can also
be edited using Microsoft Word, although they must be saved as text files
without any Word formatting. For more information, see the Dyalog for
Microsoft Windows Installation and Configuration Guide.

APL Source files can be identified by the .apl file extension. This can either specify
.NET classes or represent an APL application in a text source format (as opposed to a
workspace format). Such applications do not necessarily require .NET. The .apl file
extension can, optionally, be further categorised, for example:

l .apla files contain array definitions
l .aplc files contain class definitions
l .aplf files contain function definitions
l .apli files contain interface definitions
l .apln files contain namespace definitions
l .aplo files contain operator definitions

revision 20240223_190 26

.NET Interface Guide

4.1 The Dyalog .NET Compiler
APL Source files are compiled into executable code by the Dyalog .NET Compiler,
which is called dyalogc.exe.

By default, dyalogc.exe compiles to .NET. If the -framework option is set, it
will instead compile to .NET Framework.

For backwards compatibility, the Dyalog .NET Compiler is also distributed on
Microsoft Windows with the names identified in Table 4-1.

Unicode Edition Classic Edition

32-Bit dyalogc_unicode.exe dyalogc.exe

64-Bit dyalogc64_unicode.exe dyalogc64.exe

Table 4-1: Version-specific Dyalog .NET Compilers

The Dyalog .NET Compiler can be used to:
l compile APL Source files into a workspace (.dws) – this can subsequently be

run using dyalog.exe or dyalogrt.exe.
l compile APL Source files into a .NET class (.dll) – this can subsequently be used

by any other .NET-compatible host language, such as C#.

The script is designed to be run from a command prompt. Navigate to the appropriate
directory and type dyalogc /? to query its usage; the following output is displayed
(the output displayed here is for Microsoft Windows; the command line options are
not all applicable on other platforms):
c:/Program Files/Dyalog/Dyalog APL-64 19.0 Unicode>dyalogc /?
Dyalog .NET Compiler 64 bit. Unicode Mode. Version 19.0.48745.0
Copyright Dyalog Ltd 2000-2024

dyalogc.exe command line options:

-? Usage
-r:<file> Add reference to assembly
-o[ut]:<file> Output file name
-res:<file> Add resource to output file
-icon:<file> File containing main program icon
-q Operate quietly
-v Verbose
-v2 More verbose
-s Treat warnings as errors
-nonet Creates a binary that does not use Microsoft

.NET

revision 20240223_190 27

.NET Interface Guide

-net Creates a binary that targets .NET Version >=5
-framework Creates a binary that targets .NET Framework
-runtime Build a non-debuggable binary
-t:library Build .NET library (.dll)
-t:workspace Build dyalog workspace (.dws)
-t:nativeexe (Windows only) Build native executable (.exe).

Default
-t:standalonenativeexe (Windows only) Build native executable (.exe).

Default
-lx:<text> (Windows only) Specify entry point (Latent

Expression)
-cmdline:<text> Specify a command line to pass to the

interpreter
-nomessages (.NET Framework only) Process does not use

windows messages. Use when creating a process
to run under IIS

-console|c Creates a console application
-multihost Support multi-hosted interpreters
-unicode Creates an application that runs in a Unicode

interpreter
-wx:[0|1|3] Sets ⎕WX for default code
-a:file (.NET Framework only) Specifies a JSON file

containing attributes to be attached to the
binary

-i:Process (.NET Framework only) Set the isolation mode of
a .NET Assembly

-i:Assembly (.NET Framework only) Set the isolation mode of
a .NET Assembly

-i:AppDomain (.NET Framework only) Set the isolation mode of
a .NET Assembly

-i:Local (.NET Framework only) Set the isolation mode of
a .NET Assembly

revision 20240223_190 28

.NET Interface Guide

The -a option specifies the name of a JSON file that contains assembly
information. For example:
dyalogc.exe -t:library j:/ws/attributetest.dws -
a:c:/tmp/atts.json

where c:/tmp/atts.json contains:
{
"AssemblyVersion":"1.2.2.2",
"AssemblyFileVersion":"2.1.1.4",
"AssemblyProduct":"My Application",
"AssemblyCompany":"My Company",
"AssemblyCopyright":"Copyright 2020",
"AssemblyDescription":"Provides a text description for an
assembly.",
"AssemblyTitle":"My Assembly Title",
"AssemblyTrademark":"Your Legal Trademarks",
}

4.2 Creating an APL Source File
Conceptually, the simplest way to create an APL Source file is with a text editor,
although you can use many other tools, for example, Microsoft Visual Studio. It is
important to ensure that the file is saved with the appropriate file extension (see
Section 4).

4.3 Copying Code from the Dyalog Session
You might find it easy to write APL code using the Dyalog Session's function/class
editor, or you might already have code in a workspace that you want to copy into an
APL Source file. In either case, you can transfer code from the Session into an
appropriate text editor using the clipboard.

When pasting APL code from the Session into a text editor, line numbers can be
included; although this is allowed, it is not recommended in APL Source files.

4.4 General Principles of APL Source Files
The layout of an APL Source file differs according to what it defines. However, within
the APL Source file, the code layout rules are basically the same.

revision 20240223_190 29

.NET Interface Guide

An APL Source file contains a sequence of function bodies and executable statements
that assign values to variables. In addition, the file typically contains statements that
are directives to the Dyalog .NET Compiler. These all start with a colon symbol (:) in
the manner of control structures. For example, the :Namespace statement tells the
Dyalog .NET Compiler to create, and change into, a new namespace. The
:EndNamespace statement terminates the definition of the contents of a
namespace and changes back from whence it came.

Assignment statements are used to configure system variables, such as ⎕ML, ⎕IO,
⎕USING and arbitrary APL variables. For example:

⎕ML←2
⎕IO←0
⎕USING∪←⊂'System.Data'

A←88
B←'Hello World'

⎕CY'MYWS'

These statements are extracted from the APL Source file and executed by the Dyalog
.NET Compiler in the order in which they appear.

The statements are executed at compile time, and not at run-time, and can,
therefore, only be used for initialisation.

It is acceptable to execute ⎕CY to bring functions and variables that are to be
incorporated into the code in from a workspace. This is especially useful to import a
set of utilities. It is also possible to export these functions as methods of .NET classes
if the functions contain the appropriate colon statements.

The Dyalog .NET Compiler will execute any valid APL expression that you include.
However, the results might not be useful and could terminate the compiler. For
example, it is not sensible to execute statements such as ⎕LOAD or ⎕OFF.

Function bodies are defined between opening and closing del (∇) characters. These
are fixed by the Dyalog .NET Compiler using ⎕FX. Line numbers and white space
formatting are ignored.

4.5 Creating Programs (.exe) with APL Source
Files

This section is specific to the Microsoft Windows operating system only.

revision 20240223_190 30

.NET Interface Guide

The following examples, which illustrate how you can create an executable program
(.exe) directly from an APL Source file, can be found in the
[DYALOG]/Samples/bound_exe directory. The examples require write access to
successfully build the samples, therefore Dyalog Ltd recommends copying the
[DYALOG]/Samples/bound_exe directory to somewhere you have write access.

EXAMPLE: SIMPLE GUI

The eg1.apln APL Source file illustrates the simplest possible GUI application that
displays a message box containing the string "Hello World":

:Namespace N
⎕LX←'N.RUN'
∇RUN;M
'M'⎕WC'MsgBox' 'A GUI exe' 'Hello World'
⎕DQ'M'
∇
:EndNamespace

The code must be contained within :NameSpace and :EndNamespace statements,
and must define a ⎕LX either within the APL Source file itself or as a parameter to the
dyalogc command. In this example, ⎕LX is defined within the APL Source file.

This is compiled to a Windows executable (.exe) usingmake.bat and run from the
same command window (see Figure 4-1 and Figure 4-2).

Figure 4-1: Compiling and running APL Source file eg1.apln

Figure 4-2: "Hello World" Message Box (eg1.exe)

revision 20240223_190 31

.NET Interface Guide

The resulting executable can be associated with a desktop icon, and will run without a
command prompt window. Any default APL output that would normally be displayed
in the session window will be ignored.

EXAMPLE: SIMPLE CONSOLE

The eg2.apln APL Source file illustrates the simplest possible application that displays
the text "Hello World".:

:Namespace N
⎕LX←'N.RUN'
∇RUN
'Hello World'
∇
:EndNamespace

The code must be contained within :NameSpace and :EndNamespace statements,
and must define a ⎕LX either in the APL Source file itself or as a parameter to the
dyalogc command. In this example, ⎕LX is defined within the APL Source file.

This is compiled to a Windows executable (.exe) usingmake.bat and run from the
same command window (see Figure 4-3). The /console flag inmake.bat instructs
the Dyalog .NET Compiler to create a console application that runs from a command
prompt. In this case, default APL output that would normally be displayed in the
Session window is instead displayed in the command window from which the
program was run.

Figure 4-3: Compiling and running APL Source file eg2.apln

4.5.1 Defining Namespaces

At least one namespace must be specified in an APL Source file. Namespaces are
specified in an APL Source file using the :Namespace and :EndNamespace
statements. Although you can use ⎕NS and ⎕CS within functions inside an APL Source
file, you should not use these system functions outside function bodies; such use is
not prevented, but the results will be unpredictable.

revision 20240223_190 32

.NET Interface Guide

:Namespace Name introduces a new namespace relative to the current namespace
called Name.

:EndNamespace terminates the definition of the current namespace. Subsequent
statements and function bodies are processed in the context of the original space.

All functions specified between the :Namespace and :EndNamespace statements
are fixed within that namespace. Similarly, all assignments define variables inside that
namespace.

revision 20240223_190 33

.NET Interface Guide

5 Writing .NET Classes

Dyalog allows you to build new .NET classes, components and controls:

l A component is a class with emphasis on clean-up and containment, and
implements specific interfaces.

l A control is a component with user interface capabilities.

.NET classes created by Dyalog can be hosted by any application or programming
language that supports .NET.

With one exception, every .NET class inherits from exactly one base class. This means
that it begins with all of the behaviour of the base class, in terms of the base class
properties, methods and events. You can add functionality by defining new
properties, methods and events on top of those inherited from the base class, or by
overriding base class methods with those of your own.

5.1 Assemblies, Namespaces, and Classes
To create a .NET class in Dyalog, create a standard APL class and export the
workspace as a .NET assembly (*.dll).

Exporting APL code to .NET assemblies is only supported on 64-bit versions of
Dyalog.

.NET classes are organised in .NET namespaces. If you wrap your class (or classes)
within an APL namespace, the name of that namespace will be used to identify the
name of the corresponding .NET namespace in your assembly.

If a class is to be based upon a specific .NET class, then the name of that .NET class
must be specified as the base class in the :Class statement, and the :Using

revision 20240223_190 34

.NET Interface Guide

statements must correctly locate the base class. Otherwise, the class is assumed to be
based on System.Object. If you use any .NET types within your class, you must
ensure that these too are located by :Using.

Once you have defined the functionality of your .NET classes, you can save them in an
assembly. This is achieved in one of the following ways:

l Select Export... from the Session's Filemenu. You will be prompted to
specify the directory and name of the assembly (DLL), and it will then be
created and saved.

l Use the Bind method (see Section 5.1.1).
l Use the Dyalog .NET Compiler (see Section 5.4).

Your .NET class is now ready for use by any .NET development environment, including
APL.

When a Dyalog .NET class is invoked by a host application, it automatically loads the
Dyalog DLL, which is the developer/debug or run-time dynamic link library version of
Dyalog. The Dyalog .NET class, and all the Dyalog DLLs on which it depends, reside in
the same directory as the host program.

If you want to include a Dyalog .NET class in a Visual Studio application, Dyalog
Ltd recommends that you add the bridge DLL as a reference in a Visual Studio
.NET project.

If you want to repeat the most recent export after making changes to the class,
you can click on the icon to the right of the save icon on the WS button bar at
the top of the session. The workspace is not saved when you do an export, so if
you want the export options to be remembered you must)SAVE the
workspace after you have exported it.

5.1.1 The Bind Method

The Bindmethod is described in the Dyalog for Microsoft Windows Object Reference
Guide. A subset of the Bindmethod can be used on any supported platform to export
.NET assemblies. Specifically, the expression:

2 ⎕NQ '.' 'Bind' <filename> 'Library'

creates a .NET assembly (in <filename>) that contains the APL code in the classes in
the active workspace

revision 20240223_190 35

.NET Interface Guide

This use of the Bindmethod is similar to selecting File > Export... in the
Session.

5.2 Tutorial
All the examples in this tutorial are to be executed as simple console applications
written in C#.

The code for all of the examples is provided in the [DYALOG]/Samples/aplclasses/
directory:

l aplclassesN/aplclassesN.dws – workspaces containing the source code for the
Dyalog classes

l aplclassesN/net/project/Program.cs – the corresponding C# source code for
hosting the Dyalog classes.

Each workspace contains a .NET namespace called APLClasses which itself
contains a single .NET class called Primitives that exports a single method called
IndexGen. When executing each example, the workspace (aplclassesN.dws will be
exported to the /net/project/bin/Debug/net8.0 sub-directory as a .NET assembly
called aplclassesN.dll.

The examples in the tutorial require write access to successfully build the
samples. Dyalog Ltd recommends copying the [DYALOG]/Samples/aplclasses
directory to somewhere you have write access; in this tutorial that location will
be identified as <your_dir>.

To compile the C# source code

1. On the command line, navigate to <your_dir>/aplclassesN/net.
2. Run build (Linux and macOS)/build.bat (Microsoft Windows).

This invokes the Dyalog script compiler to compile aplclassesN.dws to
aplclassesN.dll, and then invokes the C# compiler to compile the C# source
code (Program.cs) to produce an executable called project.exe in <your_
dir>/aplclassesN/net/project/bin/Debug/net8.0.

revision 20240223_190 36

.NET Interface Guide

5.2.1 Example 1

Load the aplclasses1.dws workspace from <your_dir>/aplclasses1, then view the
Primitives class:

)ED APLClasses.Primitives

:Class Primitives
:using System
∇R←IndexGen N
:access public
:signature Int32[]←IndexGen Int32
R←⍳N
∇
:EndClass ⍝ Primitives

Primitives contains one public method/function, called IndexGen.

The public characteristics for the exported method are included in the definition of
the class and its functions, as specified in the :Signature statement. This has the
following syntax:

:Signature [rslttype←] name [arg1type [arg1name]
[,argNtype [argNname]]*]

where:

l rslttype is the type of the result returned by the function – in this example,
the function returns an array of 32-bit integers

l name is the exported name (it can be different from the APL function name but
it must be provided) – in the example, the name of the exported method is
IndexGen

l argNtype [argNname] are any arguments are to be supplied, each type-
name pair separated from the next by a comma. In this example, the function
takes a single integer as its argument.

For more information on :Signature, see the Dyalog Programming
Reference Guide.

When the class is fixed, APL will try to find the .NET data types that have been
specified for the result and for the parameters. If one or more of the data types are
not recognised as available .NET types, then a warning will be displayed in the status
window and APL will not fix the class. If you see such a warning, you have either
entered an incorrect data type name, or you have not set :using correctly, or some

revision 20240223_190 37

.NET Interface Guide

other syntax problem has been detected (for example, the function could be missing
a terminating ∇). In this example, the only data type used is System.Int32; as
:using System is included in the definition, Int32 is correctly located.

In earlier versions of Dyalog, the statements :Returns and :ParameterList
were used instead of :Signature. They are still accepted for backwards
compatibility reasons, but are considered deprecated.

5.2.1.1 aplclasses1

The C# source code (<your_dir>/aplclasses1/net/project/Program.cs) can be used to
call the Dyalog.NET class. The using statements specify the names of .NET
namespaces to be searched for unqualified class names. The program creates an
object called apl of type Primitives by calling the new operator on that class. Then
it calls the IndexGenmethod with a parameter of 10.

using System;
using APLClasses;
public class MainClass

{
public static void Main()

{
Primitives apl = new Primitives();
int[] rslt = apl.IndexGen(10);
for (int i=0;i<rslt.Length;i++)
Console.WriteLine(rslt[i]);

}
}

To compile the C# source code

1. On the command line, navigate to <your_dir>/aplclasses1/net.
2. Run build (Linux and macOS)/build.bat (Microsoft Windows).

This invokes the Dyalog script compiler to compile aplclasses1.dws to
aplclasses1.dll, and then invokes the C# compiler to compile the C# source
code (Program.cs) to produce an executable called project.exe in <your_
dir>/aplclasses1/net/project/bin/Debug/net8.0.

The output when the program is run is displayed in a console window (see Figure 5-1).

revision 20240223_190 38

.NET Interface Guide

Figure 5-1: Program output in console window

5.2.2 Example 2

In Section 5.2.1, APL supplied a default constructor, which was used to create an
instance of the Primitives class. It was inherited from the base class
(System.Object) and called without arguments. This example extends that by
adding a constructor that specifies the value of ⎕IO.

Load the aplclasses2.dws workspace from <your_dir>/aplclasses2, then view the
Primitives class:

↑⎕SRC APLClasses.Primitives
:Class Primitives
:Using System

∇ CTOR IO
:Implements constructor
:Access public
:Signature CTOR Int32 IO
⎕IO←IO

∇

∇ R←IndexGen N
:Access public
:Signature Int32[]←IndexGen Int32
R←⍳N

∇

:EndClass ⍝ Primitives

This version of Primitives contains a constructor function called CTOR which sets
⎕IO to the value of its argument. The name of this function is arbitrary.

revision 20240223_190 39

.NET Interface Guide

5.2.2.1 aplclasses2

The C# source code (<your_dir>/aplclasses2/net/project/Program.cs) can be used to
call the new version of the Dyalog .NET class:

using System;
using APLClasses;
public class MainClass

{
public static void Main()

{
Primitives apl = new Primitives(0);
int[] rslt = apl.IndexGen(10);

for (int i=0;i<rslt.Length;i++)
Console.WriteLine(rslt[i]);
}

}

The program is the same as in the previous example (see Section 5.2.1), except that
the code that creates an instance of the Primitives class now specifies an
argument; in this example, 0.

To compile the C# source code

1. On the command line, navigate to <your_dir>/aplclasses2/net.
2. Run build (Linux and macOS)/build.bat (Microsoft Windows).

This invokes the Dyalog script compiler to compile aplclasses2.dws to
aplclasses2.dll, and then invokes the C# compiler to compile the C# source
code (Program.cs) to produce an executable called project.exe in <your_
dir>/aplclasses2/net/project/bin/Debug/net8.0.

The output when the program is run is displayed in a console window (see Figure 5-2)
– the amended line numbers show the effect of changing the index origin from 1 (the
default) to 0.

revision 20240223_190 40

.NET Interface Guide

Figure 5-2: Program output in console window

5.2.3 Example 3

The correct .NET behaviour when an APL function fails with an error is to generate an
exception; this example shows how this is achieved.

In .NET, exceptions are implemented as .NET classes. The base exception is
implemented by the System.Exception class, but there are a number of super
classes, such as System.ArgumentException and
System.ArithmeticException that inherit from it.

⎕SIGNAL can be used to generate an exception. To do this, its right argument should
be 90 and its left argument should be an object of type System.Exception or an
object that inherits from System.Exception.

When you create the instance of the Exception class, you can specify a string (which
will be its Message property) containing information about the error.

Load the aplclasses3.dws workspace from <your_dir>/aplclasses3, then view its
improved (compared with that in Section 5.2.2) CTOR constructor function:

∇ CTOR IO;EX
[1] :Implements constructor
[2] :Access public
[3] :Signature CTOR Int32 IO
[4] :If IO∊0 1
[5] ⎕IO←IO
[6] :Else
[7] EX←⎕NEW ArgumentException,⊂⊂'IndexOrigin must be 0 or

1'

revision 20240223_190 41

.NET Interface Guide

[8] EX ⎕SIGNAL 90
[9] :EndIf

∇

5.2.3.1 aplclasses3

The C# source code (<your_dir>/aplclasses3/net/project/Program.cs) contains code
to catch the exception and display the exception message:
using System;
using APLClasses;
public class MainClass

{
public static void Main()

{
try

{
Primitives apl = new Primitives(2);
int[] rslt = apl.IndexGen(10);

for (int i=0;i<rslt.Length;i++)
Console.WriteLine(rslt[i]);

}
catch (Exception e)

{
Console.WriteLine(e.Message);
}

}
}

To compile the C# source code

1. On the command line, navigate to <your_dir>/aplclasses3/net.
2. Run build (Linux and macOS)/build.bat (Microsoft Windows).

This invokes the Dyalog script compiler to compile aplclasses3.dws to
aplclasses3.dll, and then invokes the C# compiler to compile the C# source
code (Program.cs) to produce an executable called project.exe in <your_
dir>/aplclasses3/net/project/bin/Debug/net8.0.

The output when the program is run is displayed in a console window (see Figure 5-3).

Figure 5-3: Program output in console window

revision 20240223_190 42

.NET Interface Guide

5.2.4 Example 4

This example builds on the example in Section 5.2.3, and illustrates how you can
implement constructor overloading by establishing several different constructor
functions.

For this example, when a client application creates an instance of the Primitives
class, is should be able to specify either the value of ⎕IO or the values of both ⎕IO
and ⎕ML. The simplest way to implement this is to have two public constructor
functions, CTOR1 and CTOR2, which call a private constructor function, CTOR.

Load the aplclasses4.dws workspace from <your_dir>/aplclasses4; the new version of
the Primitives class includes the following additions:

∇ CTOR1 IO
[1] :Implements constructor
[2] :Access public
[3] :Signature CTOR1 Int32 IO
[4] CTOR IO 0

∇

∇ CTOR2 IOML
[1] :Implements constructor
[2] :Access public
[3] :Signature CTOR2 Int32 IO,Int32 ML
[4] CTOR IOML

∇

∇ CTOR IOML;EX
[1] IO ML←IOML
[2] :If ~IO∊0 1
[3] EX←⎕NEW ArgumentException,⊂⊂'IndexOrigin must be 0 or

1'
[4] EX ⎕SIGNAL 90
[5] :EndIf
[6] :If ~ML∊0 1 2 3
[7] EX←⎕NEW ArgumentException,⊂⊂'MigrationLevel must be

0, 1, 2 or 3'
[8] EX ⎕SIGNAL 90
[9] :EndIf
[10] ⎕IO ⎕ML←IO ML

∇

revision 20240223_190 43

.NET Interface Guide

The :Signature statements for these three functions show that CTOR1 is defined as
a constructor that takes a single Int32 parameter and CTOR2 is defined as a
constructor that takes two Int32 parameters; CTOR has no .NET properties defined.
In .NET terminology, CTOR is not a private constructor but rather an internal function
that is invisible to the outside world.

Next, a function called GetIOML is defined and exported as a public method. This
function returns the current values of ⎕IO and ⎕ML:

∇ r←GetIOML
[1] :access public
[2] :signature Int32[]←GetIOML
[3] r←⎕IO ⎕ML

∇

5.2.4.1 aplclasses4

The C# source code (<your_dir>/aplclasses4/net/project/Program.cs) contains code
to invoke the two different constructor functions CTOR1 and CTOR2:
using System;
using APLClasses;
public class MainClass

{
public static void Main()

{
Primitives apl10 = new Primitives(1);
int[] rslt10 = apl10.GetIOML();
for (int i=0;i<rslt10.Length;i++)

Console.WriteLine(rslt10[i]);

Primitives apl03 = new Primitives(0,3);
int[] rslt03 = apl03.GetIOML();
for (int i=0;i<rslt03.Length;i++)

Console.WriteLine(rslt03[i]);
}

}

This code creates two instances of the Primitives class called apl10 and apl03;
the first is created with a constructor parameter of (1), and the second with two
constructor parameters (0,3).

The C# compiler matches the first call with CTOR1, because CTOR1 is defined to
accept a single Int32 parameter. The second call is matched to CTOR2, because
CTOR2 is defined to accept two Int32 parameters.

revision 20240223_190 44

.NET Interface Guide

To compile the C# source code

1. On the command line, navigate to <your_dir>/aplclasses4/net.
2. Run build (Linux and macOS)/build.bat (Microsoft Windows).

This invokes the Dyalog script compiler to compile aplclasses4.dws to
aplclasses4.dll, and then invokes the C# compiler to compile the C# source
code (Program.cs) to produce an executable called project.exe in <your_
dir>/aplclasses4/net/project/bin/Debug/net8.0.

The output when the program is run is displayed in a console window (see Figure 5-4).

Figure 5-4: Program output in console window

5.2.5 Example 5

This example builds on the example in Section 5.2.4, and illustrates how you can
implementmethod overloading.

In this example, the requirement is to export three different versions of the
IndexGenmethod; one that takes a single number as an argument, one that takes
two numbers, and a third that takes any number of numbers. These are represented
by three functions called IndexGen1, IndexGen2 and IndexGen3 respectively. The
index generator function (monadic ⍳) performs all of these operations, therefore the
three APL functions are identical. However, their public interfaces, as defined in their
:Signature statement, are all different. The overloading is achieved by entering the
same name for the exported method (IndexGen) for each of the three APL functions.

Load the aplclasses5.dws workspace from <your_dir>/aplclasses5; the new version of
the Primitives class includes three different versions of IndexGen. The first is the
version we have seen before, which is defined to take a single argument of type
Int32 and to return a 1-dimensional array (vector) of type Int32:

∇ R←IndexGen1 N
[1] :Access public

revision 20240223_190 45

.NET Interface Guide

[2] :Signature Int32[]←IndexGen Int32 N
[3] R←⍳N

∇

The second version is defined to take two arguments of type Int32 and to return a
2-dimensional array, each of whose elements is a 1-dimensional array (vector) of type
Int32:

∇ R←IndexGen2 N
[1] :Access public
[2] :Signature Int32[][,]←IndexGen Int32 N1, Int32 N2
[3] R←⍳N

∇

Although we could define seven more different versions of the method, taking 3, 4, 5
(and so on) numeric parameters, instead this method is defined more generally to
take a single parameter that is a 1-dimemsional array (vector) of numbers, and to
return a result of type Array. In practice we might use this version alone, but for a C#
programmer, this is harder to use than the two other specific cases:

∇ R←IndexGen3 N
[1] :Access public
[2] :Signature Array←IndexGen Int32[] N
[3] R←⍳N

∇

All these functions use the same descriptive name, IndexGen.

A function can have several :Signature statements. As the three functions
perform exactly the same operation, we could replace them with a single
function:

∇ R←IndexGen1 N
[1] :Access public
[2] :Signature Int32[]←IndexGen Int32 N
[3] :Signature Int32[][,]←IndexGen Int32 N1, Int32 N2
[4] :Signature Array←IndexGen Int32[] N
[5] R←⍳N

∇

revision 20240223_190 46

.NET Interface Guide

5.2.5.1 aplclasses5

The C# source code (<your_dir>/aplclasses5/net/project/Program.cs) contains code
to invoke the three different variants of IndexGen in the new aplclasses.dll. It uses a
local sub-routine PrintArray():

using System;
using APLClasses;
public class MainClass

{
static void PrintArray(int[] arr)
{

for (int i=0;i<arr.Length;i++)
{
Console.Write(arr[i]);
if (i!=arr.Length-1)

Console.Write(",");
}

}

public static void Main()
{
Primitives apl = new Primitives(0);
int[] rslt = apl.IndexGen(10);
PrintArray(rslt);
Console.WriteLine("");
int[,][] rslt2 = apl.IndexGen(2,3);

for (int i=0;i<2;i++)
{
for (int j=0;j<3;j++)

{
int[] row = rslt2[i,j];
Console.Write("(");
PrintArray(row);
Console.Write(")");
}

Console.WriteLine("");
}

int[] args = new int[3];
args[0]=2;
args[1]=3;
args[2]=4;
Array rslt3 = apl.IndexGen(args);
Console.WriteLine(rslt3);

}

revision 20240223_190 47

.NET Interface Guide

To compile the C# source code

1. On the command line, navigate to <your_dir>/aplclasses5/net.
2. Run build (Linux and macOS)/build.bat (Microsoft Windows).

This invokes the Dyalog script compiler to compile aplclasses5.dws to
aplclasses5.dll, and then invokes the C# compiler to compile the C# source
code (Program.cs) to produce an executable called project.exe in <your_
dir>/aplclasses5/net/project/bin/Debug/net8.0.

The output when the program is run is displayed in a console window (see Figure 5-5).

Figure 5-5: Program output in console window

5.3 Interfaces
Interfaces define additional sets of functionality that classes can implement; however,
interfaces contain no implementation except for static methods and static fields. An
interface specifies a contract that a class implementing the interface must follow.
Interfaces can contain shared (known as "static" in many compiled languages) or
instance methods, shared fields, properties, and events. All interface members must
be public. Interfaces cannot define constructors. The .NET runtime allows an interface
to require that any class that implements it must also implement one or more other
interfaces.

When you define a class, you list the interfaces which it supports following a colon
after the class name. The value of ⎕USING (possibly set by :Using) is used to locate
interface names.

If you specify that your class implements a certain interface, you must provide all
of the members (methods, properties, and so on) defined for that interface.
However, some interfaces are only marker interfaces and do not specify any
members.

EXAMPLE

:Class Names: Object, IEnumerable,IEnumerator

revision 20240223_190 48

.NET Interface Guide

This class is illustrated in the aplclasses8.apln APL Source file in
[DYALOG]/Samples/aplclasses/aplclasses8.

Following the colon, the first name is the base class; in this case it is the most basic
.NET class, Object. After the (optional) base class name is the list of interfaces that
are implemented (omitted if there are no such interfaces). The Names class
implements two interfaces, IEnumerable and IEnumerator.

IEnumerable and IEnumerator are required interfaces for an object that allows
itself to be enumerated, that is, its contents can be iterated though one at a time.
They define certain methods that get called at the appropriate time by the calling
code when enumeration is required (for example, the foreach C# keyword or
:For/:In in Dyalog APL. For more information, see https://learn.microsoft.com/en-
us/dotnet/api/system.collections.ienumerable?view=net-8.0.

5.4 Creating .NET Classes with APL Source Files
New .NET classes can be defined and used within an APL Source file. This section
provides a brief introduction to writing classes, aimed specifically at APL Source files –
see the Dyalog APL Programming Reference Guide for more information on writing
classes in Dyalog.

A class is defined by :Class and :EndClass statements:

l :Class Name: Type declares a new class called Name, which is based on the
base class Type, which can be any valid .NET class.

l :EndClass terminates a class definition block.

The methods provided by the class are defined as function bodies enclosed within
these statements. You can also define sub-classes or nested classes using nested
:Class and :EndClass statements.

A class specified in this way will automatically support the methods, properties and
events that it inherits from its base class, together with any new public methods that
are specified. However, the new class only inherits a default constructor (which is
called with no parameters) and does not inherit all of the other private constructors
from its base class. You can define a method to be a constructor using the
:Implements Constructor declarative comment. Constructor overloading is
supported, and you can define any number of different constructor functions in this
way, but they must have unique parameter sets for the system to distinguish between
them.

revision 20240223_190 49

.NET Interface Guide

https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.collections.ienumerable?view=net-8.0

You can create and use instances of a class by using the ⎕NEW system function in
statements elsewhere in the APL Source file.

5.4.1 Example: Creating A .NET Class Using an APL Source File

The following code illustrates how you can create a .NET Class using an APL Source
file. The example class is the same as in Section 5.2.1. The APL Source file
[DYALOG]/Samples/aplclasses/aplclasses6/aplclasses6.apln is:

:Namespace APLClasses

:Class Primitives: Object
⎕USING←,⊂'System'
:Access public

∇ R←IndexGen N
:Access Public
:Signature Int32[]←IndexGen Int32 number
R←⍳N
∇
:EndClass

:EndNamespace

This APL Source file code defines a namespace called APLClasses. This namespace
acts as a container and is there to establish a .NET namespace of the same name
within the resulting .NET assembly. Within APLClasses is a .NET class called
Primitives whose base class is System.Object. This class has a single public
method named IndexGen, which takes a parameter called number whose data type
is Int32, and returns an array of Int32 as its result.

The following command shows how aplclasses6.apln is compiled to a .NET assembly
using the /t:library flag.
aplclasses6> dyalogc.exe /t:library aplclasses6.apln
Dyalog APLScript compiler 64 bit. Unicode Mode. Version 19.0.48666.0
Copyright Dyalog Ltd 2000-2024
aplclasses6>

revision 20240223_190 50

.NET Interface Guide

Figure 5-6 shows a view of the resulting aplclasses6.dll using ILDASM.

Figure 5-6: ILDASM view of aplclasses6.dll structure

As with other .NET classes, this .NET class can be called from APL. For example:

)CLEAR
clear ws

⎕USING←'APLClasses,[DYALOG]/Samples/aplclasses/
aplclasses6/net/aplclasses6.dll'

APL←⎕NEW Primitives
APL.IndexGen 10

1 2 3 4 5 6 7 8 9 10

5.4.2 Defining Properties

Properties are defined within :Property and :EndProperty statements. A
property pertains to the class in which it is defined.

Within a :Property block, you must define the accessors of the property. The
accessors specify the code that is associated with referencing and assigning the value
of the property. No other function definitions or statements are allowed inside a
:Property block.

revision 20240223_190 51

.NET Interface Guide

The accessor used to reference the value of the property is represented by a function
called get that is defined within the :Property block. The accessor used to assign a
value to the property is represented by a function called set that is defined within
the :Property block.

The get function is used to retrieve the value of the property and must be a niladic
result returning function. The data type of its result determines the Type of the
property. The set function is used to change the value of the property and must be a
monadic function with no result. The argument to the function will have a data type
Type specified by the :Signature statement. A property that contains a get
function but no set function is effectively a read-only property.

EXAMPLE

:Property Name
∇ C←get

[1] :Access public
[2] :Signature Double←get
[3] C←...

∇
:EndProperty

This declares a new property called Name whose data type is System.Double.
When defining a property, the data type can be any valid .NET type that can be
located through ⎕USING.

The APL Source file [DYALOG]/Samples/aplclasses/aplclasses7/aplclasses7.apln
shows how a property called IndexOrigin can be added to this example. Within the
:Property block there are two functions called get and set; these functions use
the previously-described fixed names and syntax, and are used to reference and
assign a new value respectively:

:Namespace APLClasses

:Class Primitives: Object
⎕USING←,⊂'System'
:Access public

∇ R←IndexGen N
:Access Public
:Signature Int32[]←IndexGen Int32 number
R←⍳N
∇

revision 20240223_190 52

.NET Interface Guide

:Property IndexOrigin
∇io←get

:Signature Int32←get Int32 number
io←⎕IO
∇

∇set io
:Signature set Int32 number

:If io∊0 1
⎕IO←io

:EndIf
∇

:EndProperty
:EndClass
:EndNamespace

The ILDASM view of the new aplclasses7.dll, showing the new IndexOrigin
property, is shown in Figure 5-7.

Figure 5-7: ILDASM view of aplclasses7.dll structure

revision 20240223_190 53

.NET Interface Guide

As with other .NET classes, this .NET class can be called from APL. For example:

)CLEAR
clear ws

⎕USING←'APLClasses,[DYALOG]/Samples/aplclasses/
aplclasses7/net/aplclasses7.dll'

APL←⎕NEW Primitives
APL.IndexGen 10

1 2 3 4 5 6 7 8 9 10

APL.IndexOrigin
1

APL.IndexOrigin←0
APL.IndexGen 10

0 1 2 3 4 5 6 7 8 9

5.4.3 Indexers

An indexer is a property of a class that enables an instance of that class (an object) to
be indexed in the same way as an array, if the host language supports this feature.
Languages that support object indexing include C#. Dyalog also allows indexing to be
used on objects. This means that you can define an APL class that exports an indexer,
and you can use the indexer from C# or Dyalog.

Indexers are defined in the same way as properties, that is, between :Property
Default and :EndProperty statements. There can only be one indexer defined for
a class.

The :Property Default statement in Dyalog is closely modelled on the
indexer feature in C# and employs similar syntax.

If you use ILDASM to browse a .NET class containing an indexer, you will see
the indexer as the default property of that class, which is how it is
implemented.

revision 20240223_190 54

.NET Interface Guide

Index

.

.NET classes 7
Using 9
Writing 34

.NET namespaces 8

A

Accessors 51
Adding .NET objects 14
APL language extensions
for .NET objects 14

APL Source files 26
Access:Constructor statement 49
Class statement 49
Compiler 27
Copying from workspaces 30
Defining classes 49
Defining properties 51
Editing 29
EndClass statement 49
EndIndexer statement 54
EndNamespace statement 33
EndProperty statement 51
Example .NET Class 50
Example console application 32
Example GUI application 31
Importing code 29
Indexer statement 54
Layout 29
Namespace statement 33
Property statement 51
Specifying namespaces 32

Assemblies
Creating 34

B

Base class 7, 22, 34, 39, 49-50
Bridge DLL 35
ByRef class 23

C

C# 38, 40, 42, 44, 47
Class methods 14
Class statement 49
Common Language Runtime 7
Common operators 14
Common Type System 7
Comparing .NET objects 14
Constructor 39
Constructor methods 10
Constructor overloading 43
Constructor statement 49
Constructors 10

D

DECF 25
Directory class 18
DivRem method 23
Dyalog .NET Compiler 27
Dyalog DLL 35
Dyalog namespace 23
Dyalog.Net.Bridge.dll 4
Dyalog.Net.Bridge.Host.dll 4
dyalogc.exe 27

revision 20240223_190 55

.NET Interface Guide

E

EndClass statement 49
Enumerations 21
Exception class 16
Exceptions 16, 41
Export 35

F

File class 18
FileStream class 25
Floating-point representation 25

G

GetType method 12

H

HttpWebRequest class 20
HttpWebResponse class 21

I

ILDASM 51, 53-54
IME 26
Indexers 54
Input Method Editor (IME) 26
Interfaces 48

M

MailMessage class 19
Manipulating files 18
Math class 23
Method overloading 45

N

Namespace reference array
expansion 19
nethost.dll 4
New system function 11

O

Overloading 10
Overloads 17
OverloadTypes variant option 17
Overriding 34

P

Pointers 23
Pre-requisites 3

S

Sending an email 19
Signature statement 37
SmtpMail class 19
Stream class 21
StreamReader class 21
Subtracting .NET objects 14

T

ToString method 10-11

U

URI class 20
USING system variable 48

V

Variant operator 17
Variant option
OverloadTypes 17

Visual Studio .NET 35

W

Web scraping 20

revision 20240223_190 56

.NET Interface Guide

	1 About This Document
	1.1 Audience
	1.2 Conventions

	2 Installation
	2.1 Pre-requisites
	2.1.1 Installing .NET

	2.2 Files Installed with Dyalog
	2.3 Enabling the .NET Interface
	2.4 Verifying the Installation

	3 .NET Classes
	3.1 Locating .NET Classes and Assemblies
	3.2 Using .NET Classes
	3.2.1 Constructors and Overloading
	3.2.2 Resolving References to .NET Objects
	3.2.3 Displaying a .NET Object
	3.2.3.1 Value Tips for External Functions

	3.2.4 Disposing of .NET Objects

	3.3 Advanced Techniques
	3.3.1 Shared Members
	3.3.2 APL Language Extensions for .NET Projects
	3.3.3 Exceptions
	3.3.4 Specifying Overloads
	3.3.4.1 Overloaded Constructors

	3.4 Example Usage
	3.4.1 Directory and File Manipulation
	3.4.2 Sending an Email
	3.4.3 Web Scraping

	3.5 Enumerations
	3.6 Handling Pointers with Dyalog.ByRef
	3.7 DECF Conversion

	4 APL Source Files
	4.1 The Dyalog .NET Compiler
	4.2 Creating an APL Source File
	4.3 Copying Code from the Dyalog Session
	4.4 General Principles of APL Source Files
	4.5 Creating Programs (.exe) with APL Source Files
	4.5.1 Defining Namespaces

	5 Writing .NET Classes
	5.1 Assemblies, Namespaces, and Classes
	5.1.1 The Bind Method

	5.2 Tutorial
	5.2.1 Example 1
	5.2.1.1 aplclasses1

	5.2.2 Example 2
	5.2.2.1 aplclasses2

	5.2.3 Example 3
	5.2.3.1 aplclasses3

	5.2.4 Example 4
	5.2.4.1 aplclasses4

	5.2.5 Example 5
	5.2.5.1 aplclasses5

	5.3 Interfaces
	5.4 Creating .NET Classes with APL Source Files
	5.4.1 Example: Creating A .NET Class Using an APL Source File
	5.4.2 Defining Properties
	5.4.3 Indexers

	Index

